Integrated Decision and Control: Toward Interpretable and Computationally Efficient Driving Intelligence
Abstract
-
Backgroud
Current mainstream methods suffers high time complexity or poor interpretability and adaptability on real-world autonomous driving tasks.
-
Our contribution
integrated decision and control (IDC) :a interpretable and computationally efficient framework
-
How:
decompose into 2 parts: [ SPP: static path planning ] + [ DOT: dynamic optimal tracking ]
-
SPP only considers static traffic elements -> generates candidate paths (each formulated with a constrained optimal control problem (OCP)),
-
DOT track the optimal path while considering the dynamic obstacles (each candidate path is optimize separately )
-
model-based RL algorithm served as an approximate-constrained OCP solver to ease computation burden
- 具体来说,将所有路径的 OCP 一起考虑以构建一个完整的 RL 问题,然后以价值网络和策略网络的形式离线求解,分别用于实时在线路径选择和跟踪。
-
-
result
结果表明,与基线方法相比,IDC 具有一个数量级的在线计算效率,以及更好的驾驶性能,包括交通效率和安全性。此外,它在不同的驾驶场景和任务之间产生了很好的可解释性和适应性。
Introduction
研究技术回顾
two technical routes for the decision and control of automated vehicles:
-
decomposed scheme
splits into several serial submodules:
- scene understanding
- prediction
- behavior selection (finite-state machine, decision tree ),
- trajectory planning
- optimization-based -> high computational complexity
- search-based -> low-resolution & barely consider dynamic obstacles.
- Xin's Enable faster and smoother spatio-temporal trajectory planning for autonomous vehicles in constrained dynamic environ- ment combined them together -> requires a large amount of human design & cannot guarantee real-time performance
- control
-
end-to-end scheme.
直接从感知模块给出的输入计算预期指令,不依赖于标记数据。
有限的安全性能和较差的学习效率,主要用于特定任务,其中需要一组复杂的奖励函数来为策略优化提供指导,例如前往目的地的距离、与其他道路使用者或场景对象的碰撞以及维护舒适性和稳定性,同时避免极端加速、制动或转向。
This article:
proposes an integrated decision and control (IDC) framework for automated vehicles, which has great interpretability and online computing efficiency and is applicable in different driving scenarios and tasks
3 parts of contributions:
- IDC framework:
- 高级静态路径规划:仅考虑静态约束(例如道路拓扑和交通信号灯)生成多条路径。
- 低级动态最优跟踪:选择最优路径并考虑动态障碍物对其进行跟踪,其中针对每个候选路径构建和优化有限视域约束最优控制问题(OCP)
- 优势:
- 高效计算:because it unloads the heavy online optimizations of the constrained OCPs in offline using RL
- 可解释:because the value and policy NNs are the approximation for the optimal cost and action of the constrained OCP
- One more thing: the formulated OCP in the IDC is task independent with tracking objective and safety constraints, making it applicable among a variety of scenarios and tasks.
- model-based RL algorithm: generalized exterior point method (GEP)
- 它首先构造一个涉及所有候选路径的广泛问题,并将其转换为一个不受约束的问题,并对安全违规进行惩罚。然后,通过交替执行梯度下降和扩大惩罚来获得近似可行的最优控制策略。
- GEP 可以明确地处理具有大规模状态约束的问题,并在模型的指导下有效地更新 NN。
- verify in simulations and real-world road: online computing efficiency, safety, task adaptation
Intergrated and Decision and Control Framwork
- upper layer only consider the static problems: traffic light etc & not include time information, generating serveral candidate path
- considers the candidate paths and the dynamic information, a constrained OCP is formulated and optimized for each candidate path to choose the optimal path and find the control command. 我们方法的核心是用 RL 离线训练的两个 NN 的前馈来代替所有昂贵的在线优化。
terminology
什么是离线优化、在线优化、增量优化?
离线常用优化器 https://zhuanlan.zhihu.com/p/360258616
Interior-point method
https://zhuanlan.zhihu.com/p/34426575
处理带约束优化问题