Utopi
a

Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation

From Proceedings of the IEEE Conference on Robotics and Automation, Sacramento, California, April 7-12, 1991, pp. 1398-1404

by Y. Koren, Senior Member, IEEE and J. Borenstein, Member, IEEE The University of Michigan, Ann Arbor

ABSTRACT

  • PFM being popular obstacle avoidance applications
    • because of its elegance and simplicity
    • shortcomings are inherent issues
  • This paper presents a systematic criticism of the inherent problems
    • The identified problems are discussed in qualitative and theoretical terms
    • documented with experimental results from actual mobile robot runs

Introduction

  • PFM is for obstacle avoidance (obstacles exert repulsive forces while the target applies an attractive force to the robot)
  • initial design is slow
  • we developed a PFM: virtual force field (VFF)

The Virtual Force Field (VFF) Method

  • designed for real-time obstacle avoidance with fast mobile robots

    • feature: fast, continuous, and smooth motion

    • method: two-dimensional Cartesian grid( histogram grid C )

      • Each cell (i,j) in the histogram grid holds a certainty value (CV) :

        represents the confidence of the algorithm in the existence of an obstacle at that location

      • dynamic active region CC^* (33x33)

      • Each active cell exerts a virtual repulsive force Fi,jF_{i,j} toward the robot.

      • The magnitude of this force is proportional to ci,jc^*_{i,j} and inversely proportional to dnd^n (distence between cell and object)

dashjdaksja

Robot-Environment Mathematical Analysis

引入一个微分方程,描述机器人受环境影响的运动, 该方程基于将转向系统( steering system )模型与环境参数相结合。

dkjahsjkd

可能会引起机器人来回震荡,停滞不前。

The Experimental System

real world experiement: CARMEL (Computer-Aided Robotics for Maintenance, Emergency, and Life support)

qqqqqwertyuiovbn

Problems with Potential Field Methods

4 significant problems that are inherent to PFMs and independent of the particular implementation:

  1. Trap situations due to local minima (cyclic behavior).

    • a dead end (e.g., inside a U-shaped obstacle)
    • Remedies: heuristic recovery rules -> non-optimal path & local path planner (LPP) + integrated global path planner (GPP)
  2. No passage between closely spaced obstacles.

  3. Oscillations in the presence of obstacles.

  4. Oscillations in narrow passages ( pass by unstable motions ).

    adhas

Conclusion

基于严格的数学分析,我们对势场方法 (PFM) 的固有问题进行了系统概述和批判性讨论。

具体来说,我们已经确定了四个明显的缺点。这些缺点中的两个与振荡的可能性有关,只有当 PFM 在高速实时系统中实现时才会变得明显。大多数研究人员将精力集中在潜在场的模拟程序上;他们似乎没有意识到一旦尝试在实验系统中实际实施,必然会出现的实质性的、可能无法解决的问题。其他研究人员使用实际的移动机器人工作,但速度较慢,这掩盖了 PFM 的缺点。 由于这些原因,我们完全放弃了势场方法,并开发了一种快速避障的新方法。这种方法称为矢量场直方图 (VFH) 方法,可产生平滑的非振荡运动,而采样时间和硬件与 VFF 方法中使用的相同。 VFH方法在下一篇论文中被介绍。

附录

https://zhuanlan.zhihu.com/p/104048823

Motion Planning

Motion Planning是在遵循道路交通规则的前提下,将自动驾驶车辆从当前位置导航到目的地的一种方法。

约束条件(constraints):

  • 车辆运动学约束
  • 静态障碍物(Static Obstacle)约束
  • 动态障碍物约束
  • 道路交通规则约束

Motion Planning的优化目标

1)关注路径长度(Path Length),寻求到达目的地的最短路径。

sf=sisf1+(dydx)2dxs_f = \int^{s_f}_{s_i}{\sqrt{1+ (\frac{dy}{dx})^2}dx}

2)关注通行时间(Travel Time),寻求到达目的地的最短时间。

Tf=0sf1v(s)dsT_f = \int^{s_f}_{0} {\frac{1}{v(s)}ds}

3)惩罚偏离参考轨迹和参考速度的行为。

0sfx(s)xref(s)ds\int^{s_f}_{0} {||x(s) - x_{ref}(s)||ds}

0sfv(s)vref(s)ds\int^{s_f}_{0} {||v(s) - v_{ref}(s)||ds}

4)考虑轨迹平滑性(Smoothness)

0sf\dddotx(s)2ds\int^{s_f}_{0} {||\dddot{x}(s)||^2ds}

5)考虑曲率约束(Curvature)

0sfk(s)2ds\int^{s_f}_{0} {||k(s)||^2ds}

通过组合设计自己的目标优化函数,从而获得较好的Planning效果。

分级运动规划器(Hierarchical Motion Planning)

Motion Planning是一个异常复杂的问题,所以通常我们把它切分为一系列的子问题。

img
  • Mission Planner 关注High-Level的地图级别的规划;通过Graph Based的图搜索算法实现自动驾驶路径的规划。

  • Behavior Planner 主要关注交通规则、其它道路交通参与者(自行车、行人、社会车辆)等等,决定在在当前场景下应该采取何种操作(如停车让行、加速通过、避让行人等等)。

  • Local Planner 关注如何生成舒适的、碰撞避免的行驶路径和舒适的运动速度,所以Local Planner 又可以拆分为两个子问题:Path Planner和Velocity Profile Generation。Path Planner又分为 Sampling-Based Planner、Variational Planner 和 Lattice Planner。

    • 最经典的Sampling-Based Planner算法是Rapidly Exploring Random Tree,RRT算法。
    img
    • Variational Planner根据Cost Function进行优化调整,从而避开障碍物,生成安全的轨迹。
    img
    • Lattice Planner将空间搜索限制在对车辆可行的Action Space。
    img
    • Velocity Profile Generation要考虑到限速、速度的平滑性等。