Utopi
a

Considering human-vehicle handover to predict autonomous vehicle conflict risk: A deep learning method for radar-video integrated data

Abstract

  • 使用交通流特征实时冲突预测模型(之间的关系)

  • 使用HighD 数据集(经验数据),使用虚拟检测器方法进行 1. 交通特征提取 2. 两步框架 -> 轨迹数据分析的新方法。

    • 对具有均值和方差异质性的随机参数 logit 模型的探索性研究
    • 几种机器学习方法(eXtreme Gradient Boosting (Boosting)、Random Forest (Bagging)、Support Vector Machine (Single-classifier)和多层感知器)的比较研究
  • 结论:

    • 交通流特征对冲突发生概率有显着影响。
    • 考虑**[平均异质性](# 异质性 Heterogeneity )**的统计模型优于对应变量,车道差异变量对【车道变量+车道差异变量】的随机参数均值有显着影响。
    • 在欠采样数据集上训练的 eXtreme Gradient Boosting最佳模型AUC 0.871,精度 0.867
      • 模型对冲突阈值敏感 -> 冲突风险预测应同时考虑主体车道特征和车道差异特征

Introduction

conflict-prone modols are preferred

  • previews studies: based on crash data, aiming at estimating crash risk

  • real-time traffic flow characteristics - ( effective ) -> in real-time crash risk prediction

  • limitations in real-time crash risk prediction:

    • crash data error ( inaccurate time, long collection time, temporal or spatial instability of accident data -> limited transferability)
    • not enough historical crashes alongwith traffic flow data
  • more general objective: crash-prone and conflict-prone

  • Conflict modelingis are more proactive: don't need crash data and requires shorter data collecting time

real-time conflict-based study been neglected and need to be paid attention

  • use microscopic kinematics reaction instead of traffic flow features
  • known little about the conflict mechanism and inherent heterogeneity from a traffic flow perspective

aim:

  1. conflicts - ( bridge ) - dynamic traffic flow characteristics

  2. traditional crash risk prediction - ( extend ) -> conflict-based

objectives: 从宏观交通特征的角度理解冲突机制,以及开发具有高预测性能 和 现实就业适用性的冲突风险模型

贡献:

  1. 提出了一种利用虚拟检测器方法提取交通 流数据的新方法,并提出了一种用于轨迹数据分析的两步框架;
  2. 通过探索它们之间的关联,将交通流 和微观冲突联系起来,同时考虑未观察到的异质性;
  3. 总结了机器学习方法、不平衡学习技术以及冲突阈 值和交通特征选择的敏感性分析的经验教训,以供未来研究。

Literature review

Real-time crash risk prediction

  • resl-time risk studies is very diffrent from traditional crash prediction analysis
    • real-timecrash risk study is a [disaggregate](# disaggregate and aggregate data) safety study, which considers each crash as an observation and focuses on conditions where a crash is more likely to occur. (安全关键事件附近的空间和时间上的动态交通特征)
    • Traditional crash frequency analysis, typical aggregate study, which aims at identifying a specific region where more crashes are likely to occur( 通过泊松、负二项式、泊松-正态等变量数据模型来估计碰撞频率 )

Common analytic framework in real-time crash analysis

five critical steps:

  1. 基于现有知识提出交通参数的描述性统计,定义交通特征聚合(traffic feature aggregation)的时间窗口
  2. 基于历史碰撞数据和交通数据,构建包含碰撞观测正常观测的初步数据集
  3. 按照指定的碰撞案例和正常案例的比例对初步数据集进行重新采样
  4. 考虑二元分类问题并开发模型(分类器)以识别具有高碰撞可能性的交通状况
  5. 结合实际应用,通过多指标评估模型性能

two methods: machine learning models are better than statistical models

  • need of the consideration of heterogeneity
  • ML are superior in capturing the high-dimensional and non-linear relationship between input features and outcomes
  • ML - ( black-box issue ) -> ,weak inferential ability and cannot obtain a thorough understanding of the mechanism of crashes or conflicts

两步走的框架工作:

  1. 统计模型来确认交通流量和冲突发生的关联,并了解相应的冲突机制
  2. 机器学习方法来实时预测冲突风险

Real-time conflict-based studies

terminology

  • 异质性 Heterogeneity

    • 一个变量X对另一个变量Y的影响可能因个体而异: 多上一年学让张三的收入增加了1000元,让李四的收入增加了1200元,那么教育年限对收入的影响就存在异质性;
  • 异方差:Heteroskedasticity

    • 在变量X的不同水平上,变量Y取值的波动大小可能不同。例:所有小学毕业的人,有的做了老板年入百万,有的成为工薪阶层年入几万——在六年教育水平上,收入取值的波动很大。所有大学毕业的人,都能找到不错的工作,收入多的年赚百万,收入低的也有几十万——在十六年的教育水平上,收入取值的波动较小。
  • disaggregate and aggregate data

    Aggregated-data-vs.disaggregated-data-toladata-1024x1024